Phospholipase C activity affinity purifies with the Torpedo nicotinic acetylcholine receptor.

نویسندگان

  • Jonathan M Labriola
  • Corrie J B daCosta
  • Shuzhi Wang
  • Daniel Figeys
  • Jeffrey C Smith
  • R Michel Sturgeon
  • John E Baenziger
چکیده

Nicotinic acetylcholine receptors mediate fast synaptic transmission by fluxing ions across the membrane in response to neurotransmitter binding. We show here that during affinity purification of the nicotinic acetylcholine receptor from Torpedo, phosphatidic acid, but not other anionic or zwitterionic phospholipids, is hydrolyzed to diacylglycerol. The phospholipase C activity elutes with the acetylcholine receptor and is inhibited by a lipid phosphate phosphohydrolase inhibitor, sodium vanadate, but not a phosphatidate phosphohydrolase inhibitor, N-ethylmaleimide. Further, the hydrolysis product of phosphatidic acid, diacylglycerol, enhances the functional capabilities of the acetylcholine receptor in the presence of anionic lipids. We conclude that a phospholipase C activity, which appears to be specific for phosphatidic acid, is associated with the nicotinic acetylcholine receptor. The acetylcholine receptor may directly or indirectly influence lipid metabolism in a manner that enhances its own function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of bis(7)-tacrine on spontaneous synaptic activity and on the nicotinic ACh receptor of Torpedo electric organ.

Bis(7)-tacrine is a potent acetylcholinesterase inhibitor in which two tacrine molecules are linked by a heptylene chain. We tested the effects of bis(7)-tacrine on the spontaneous synaptic activity. Miniature endplate potentials (MEPPs) were recorded extracellularly on slices of electric organ of Torpedo marmorata. Bis(7)-tacrine, at a concentration of 100 nM, increased the magnitudes that des...

متن کامل

Probing the reorganization of the nicotinic acetylcholine receptor during desensitization by time-resolved covalent labeling using [3H]AC5, a photoactivatable agonist.

The structural reorganizations occurring on the nicotinic acetylcholine receptor (nAChR) during activation and subsequent desensitization have been investigated through time-resolved photoaffinity labeling using a photoactivatable nicotinic agonist. [(3)H]AC5 is a photosensitive nicotinic probe with high affinity for the desensitized state of the Torpedo marmorata receptor (K(D) = 5 nM) that di...

متن کامل

A second pathway of activation of the Torpedo acetylcholine receptor channel.

We have studied the interaction of the reversible acetylcholine esterase inhibitor (-)physostigmine (D-eserine) with the nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata electric tissue by means of ligand-induced ion flux into nAChR-rich membrane vesicles and of equilibrium binding. We find that (-) physostigmine induces cation flux (and also binds to the receptor) even in the pr...

متن کامل

Aminotriarylmethane dyes are high-affinity noncompetitive antagonists of the nicotinic acetylcholine receptor.

A series of aminotriarylmethane dyes were examined for binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica. Several compounds were found to bind to the noncompetitive antagonist site of the AChR as demonstrated by inhibition of [3H]phencyclidine binding; apparent KD values ranged from 50 nM to >100 microM. One dye with high affinity, crystal violet, revealed a greate...

متن کامل

Molecular characterization of the specificity of interactions of various neurotoxins on two distinct nicotinic acetylcholine receptors.

Snake curaremimetic toxins are currently classified as short-chain and long-chain toxins according to their size and their number of disulfide bonds. All these toxins bind with high affinity to muscular-type nicotinic acetylcholine receptor, whereas only long toxins recognize the alpha7 receptor with high affinity. On the basis of binding experiments with Torpedo or neuronal alpha7 receptors us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 14  شماره 

صفحات  -

تاریخ انتشار 2010